Abstract
It is well known that magnetic resonance (MR) imaging is temperature sensitive, which is highly relevant for post mortem examinations. Therefore, the determination of the exact temperature of the investigated body site, e.g. the brain, is crucial. However, direct temperature measurements are invasive and inconvenient. Thus, in view of post mortem MR imaging of the brain, this study aims at investigating the relation between the brain and the forehead temperature for modelling the brain temperature based on the non-invasive forehead temperature. In addition, the brain temperature will be compared to the rectal temperature.Brain temperature profiles measured in the longitudinal fissure between the brain hemispheres, as well as rectal and forehead temperature profiles of 16 deceased were acquired continuously. Linear mixed, linear, quadratic and cubic models were fitted to the relation between the longitudinal fissure and the forehead and between the longitudinal fissure and the rectal temperature, respectively.Highest adjusted R2 values were found between the longitudinal fissure and the forehead temperature, as well as between the longitudinal fissure and the rectal temperature using a linear mixed model including the sex, environmental temperature and humidity as fixed effects.The results indicate that the forehead, as well as the rectal temperature, can be used to model the brain temperature measured in the longitudinal fissure. Comparable fit results were observed for the longitudinal fissure-forehead temperature relation and for the longitudinal fissure-rectal temperature relation. Combined with the fact that the forehead temperature overcomes the problem of measurement invasiveness, the results suggest using the forehead temperature for modelling the brain temperature in the longitudinal fissure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.