Abstract

AbstractExperiment and numerical simulation of flow transition in a compressor cascade with positively curved blade is carried out in a low speed. In the experimental investigation, the outlet aerodynamic parameters are measured using a five-hole aerodynamic probe, and an ink-trace flow visualization is applied to the cascade surface. The effects of transition flow on the boundary layer development, three-dimensional flow separation and aerodynamic performance are studied. The feasibility of a commercial computational fluid dynamic code is validated and the numerical results show a good agreement with experimental data. The blade-positive curving intensifies the radial force from the endwalls to the mid-span near the suction surface, which leads to the smaller scope of the intermittent region, the lesser extents of turbulence intensity and the shorter radial height of the separation bubble near the endwalls, but has little influence on the flow near the mid-span. The large passage vortex is divided into two smaller shedding vortexes under the impact of the radial pressure gradient due to the positively curved blade. The new concentrated shedding vortex results in an increase in the turbulence intensity and secondary flow loss of the corresponding region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call