Abstract

A portable fluorescence optical detection system was developed to demonstrate real-time in situ analysis of cells that are three-dimensionally cultured in an extracellular matrix under microfluidic environment. The system was designed to provide a large field of view in the lateral plane to average out cellular processes in an axial layer and simultaneously diffraction-limited axial resolution. In this proof-of-concept study, the detection system was applied to quantitative analyses of short-term measurements of cell staining and cell cytotoxicity and long-term monitoring of a cell-invasion assay. For assays, colon cancer cells were cultured in a Matrigel or alginate matrix. The measured data were largely consistent with predicted results and revealed quantitatively cell dynamics specific to 3D cell cultures. The detection system has a potential as a single package to investigate 3D cultures in a microfluidic system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.