Abstract
Piracetam was investigated as a model API which is known to exhibit a number of different polymorphic forms. It is freely soluble in water so the possibility exists for polymorphic transformations to occur during wet granulation. Analysis of the polymorphic form present during lab-scale wet granulation, using water as a granulation liquid, was studied with powder X-ray diffraction and Raman spectroscopy as off-line and inline analysis tools respectively. Different excipients with a range of hydrophilicities, aqueous solubilities and molecular weights were investigated to examine their influence on these solution-mediated polymorphic transitions and experimental results were rationalised using molecular modelling. Our results indicated that as an increasing amount of water was added to the as-received piracetam FIII, a greater amount of the API dissolved which recrystallised upon drying to the metastable FII(6.403) via a monohydrate intermediary. Molecular level analysis revealed that the observed preferential transformation of monohydrate to FII is linked with a greater structural similarity between the monohydrate and FII polymorph in comparison to FIII. The application of Raman spectroscopy as a process analytical technology (PAT) tool to monitor the granulation process for the production of the monohydrate intermediate as a precursor to the undesirable metastable form was demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Pharmaceutics and Biopharmaceutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.