Abstract

The effect of poly(L-lysine) on dipalmitoylphosphatidylglycerol bilayers has been studied by Raman and infrared spectroscopies, small-angle X-ray diffraction, and carboxyfluorescein escape experiments. The polypeptide is shown to induce a stabilization of the bilayer detected by the increase of interchain vibrational coupling and a slight decrease of the overall disorder. In addition, long polylysine (Mr 150,000) induces a positive shift of the gel to fluid transition temperature and, at lipid to lysine molar ratios greater than 1, a lateral phase separation within the bilayer. Raman and infrared spectra indicate modifications at the head group level. In contrast, short polylysine (Mr 4,000) leads to a decrease of the lipid thermotropic transition temperature, and no modification of the polar head group and no phase separation could be observed. These differences between short and long polypeptides are correlated with the conformation the polypeptide adopts upon binding to the lipid, which favors the formation of alpha-helices in the case of long polypeptides (Mr greater than or equal to 14,000). The X-ray data suggest that the basic polypeptide acts as a bridge between neighboring bilayers, thus causing their aggregation and dehydration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.