Abstract

Polonium contamination on material surfaces has been considered one of the problems in the use of lead-bismuth eutectic (LBE) as a coolant and/or target in nuclear systems. Neutron-irradiated LBE contains polonium and can contaminate material surfaces of the primary loop in nuclear systems. Some methods for removal of polonium from neutron-irradiated LBE have been investigated. In this paper, the theory and the effectiveness of the baking method for polonium decontamination of a material surface contaminated by neutron-irradiated LBE are described. Theoretical investigation of the baking method was performed using Langmuir’s equation. The effectiveness of the baking method was investigated by baking experiments using Type 316 stainless steel plates contaminated by neutron-irradiated LBE. The experimental results indicated that the baking method is effective for polonium decontamination when the baking temperature is more than 500°C in a vacuum condition (0.4 Pa). The effective temperature for polonium decontamination of Type 316 plates differed from that of quartz glass plates previously reported. Comparing the experimental results and calculations of the evaporation rate of polonium compound by Langmuir’s equation showed that the difference in effective temperatures was due to the different chemical forms of polonium, i.e., elemental polonium and lead polonide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.