Abstract
Ferroelectric hysteresis loops were measured and the temperature evolution of the coercive field traced in [110]-oriented 0.8Pb(Mb1/3Nb2/3)O3–0.2PbTiO3 single crystal in the temperature range from 120 to 300 K at frequencies from 2 to 50 Hz. It was found that the coercive field rised with decreasing temperature in power-law manner at all frequencies. Temperature-dependent hysteresis model was used for approximation of acquired coercive field-temperature dependences. It was shown that nanoscale ferroelectric domains could be created at PMN-20PT surface by voltage pulses applied between the tip of atomic force microscope and bottom electrode at temperatures as low as 100 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.