Abstract
Arbuscular mycorrhizal (AM) fungi influence plant mineral nutrient uptake and growth, hence, they have the potential to influence plant interactions. The power of their influence is in extraradical mycelia that spread beyond nutrient depletion zones found near roots to ultimately interconnect individuals within a common mycorrhizal network (CMN). Most experiments, however, have investigated the role of AM fungi in plant interactions by growing plants with versus without mycorrhizal fungi, a method that fails to explicitly address the role of CMNs. Here, we propose a method that manipulates CMNs to investigate their role in plant interactions. Our method uses modified containers with conical bottoms with a nylon mesh and/or hydrophobic material covering slotted openings, 15N fertilizer, and a nutrient-poor interstitial sand. CMNs are left either intact between interacting individuals, severed by rotation of containers, or prevented from forming by a solid barrier. Our findings suggest that rotating containers is sufficient to disrupt CMNs and prevent their effects on plant interactions across CMNs. Our approach is advantageous because it mimics aspects of nature, such as seedlings tapping into already established CMNs and the use of a suite of AM fungi that may provide diverse benefits. Although our experiment is limited to investigating plants at the seedling stage, plant interactions across CMNs can be detected using our approach which therefore can be applied to investigate biological questions about the functioning of CMNs in ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.