Abstract
The elevated-temperature indentation has been utilized to measure the elevated-temperature mechanical properties of thermal barrier coatings (TBCs), which have a major influence on their thermomechanical characteristics and failures. In this paper, the pile-up phenomenon of TBCs under elevated-temperature indentation was investigated, and a characterization method for Young's modulus of TBCs was proposed. According to the dimensional analysis and finite-element method, a critical temperature-dependent factor was conducted as the criterion for pile-up behavior. Some experiment results agreed fairly well with the criterion. Then, the pile-up behavior of TBCs at elevated temperature was studied. It was found that the pile-up behavior depended on the temperature-dependent factor and got larger with increasing temperature. Finally, a characterization method was proposed to extract the Young's modulus of TBCs, which was found to be more suitable for elevated-temperature indentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.