Abstract

ABSTRACTComposites of polyvinyl chloride (PVC) with 2% calcium carbonate, 2% diethyl phthalate, 2% paraffin wax and 2% lead sulphate and different contents of antimony trioxide (Sb2O3) prepared by melting and irradiated with gamma ray have been considered. Assessment of the mechanical and thermal properties of the unirradiated and irradiated flexible polyvinyl chloride (FPVC) were completed utilizing elasticity (TS), Elongation at break (Eb) and thermogravimetric analysis measurements. TS and thermal stability of FPVC displayed advanced improvement after addition of additives and this approach highlighted the efficiency of those ingredients on PVC. The compounding of FPVC with Sb2O3 in various extents was examined by FTIR, X-ray diffraction and scanning electron microscope methods. It is obvious that the presence of Sb2O3 begins impacting oxidative degradation, leading to a decrease in mechanical properties up to 10%. Moreover, a slight increase in the thermal stability of composites by exposure to ionizing radiation is apparently due to cross-linking of FPVC chains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call