Abstract
With its low unit weight, expanded perlite (EP) offers significant advantages in heat and sound insulation in the construction sector. However, due to its high-water absorption capacity, EP affects the physical and mechanical properties of concrete negatively. Therefore, it is aimed to reduce water absorption by coating the EP with polymer and thus to improve its mechanical and physical properties. In this study, mortar production was carried out by replacing coated and uncoated EP with CEN reference sand at 0%, 20%, 40%, 60%, and 80% respectively. The effective water/cement ratio of all produced mortar samples was determined to be 0.6. For coated and uncoated EP aggregate mortar series, unit weight, compressive strength, bending tensile strength, water absorption, ultrasonic pulse velocity (UPV), and thermal conductivity coefficient were determined. The results showed that the unit weight of the mortar samples decreased as the amount of EP increased, but their physical and mechanical properties also changed. Mortar samples with better thermal insulation properties were obtained with decreasing thermal conductivity values. The polymer coating of EP improved physical and mechanical properties. Especially in the 80% substituted EP series, the thermal conductivity decreased from 1.20 to a coefficient of 0.91 W/mK.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.