Abstract

Color centers in hexagonal boron nitride (hBN) are presently attracting broad interest as a novel platform for nanoscale sensing and quantum information processing. Unfortunately, their atomic structures remain largely elusive and only a small percentage of the emitters studied thus far have the properties required to serve as optically addressable spin qubits. Here, we use confocal fluorescence microscopy at variable temperatures to study a new class of point defects produced via cerium ion implantation in thin hBN flakes. We find that, to a significant fraction, emitters show bright room-temperature emission, and good optical stability suggesting the formation of Ce-based point defects. Using density functional theory (DFT) we calculate the emission properties of candidate emitters, and single out the CeVB center—formed by an interlayer Ce atom adjacent to a boron vacancy—as one possible microscopic model. Our results suggest an intriguing route to defect engineering that simultaneously exploits the singular properties of rare-earth ions and the versatility of two-dimensional material hosts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.