Abstract

Hypocrellin B (HB) is a natural pigment with a promising application in the photodynamic therapy (PDT) for anticancer treatment. The photobleaching of HB in non-polar organic solvents and in liposomes in aqueous solution were investigated by the measurements of absorption spectra, quenching experiments and determination of photoproducts. Control experiments indicated that the sensitizer, oxygen and light were all essential for the photobleaching of HB, which suggested that it was mainly self-sensitized photooxidation. The illumination of HB with visible light in aerobic non-polar solvent generated singlet oxygen efficiently [Φ( 1O 2)=0.76] which then attacked the sensitizer HB with formation of an endoperoxide product. The endoperoxide of HB was unstable at room temperature and underwent predominantly loss of singlet oxygen with regeneration of parent HB. The singlet oxygen released from the endoperoxide of HB was detected with chemical trapping experiments. When HB was embedded in EPC liposomes, no endoperoxide product and no singlet oxygen release from the photobleaching process of HB were detected. The quenching experiments indicated that the singlet oxygen mechanism (type II) played an important role in the non-polar solvent and the free radical mechanism (type I) was predominant in liposomal aqueous solution for the photobleaching of HB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call