Abstract

The phase transitions and critical phenomena in three-dimensional (3D) site-diluted 3-and 4-state Potts models is investigated by Monte-Carlo method based on the highly efficient Wolff algorithm. The systems with linear sizesL=20-44 at spin concentrationsp=1.00, 0.95, 0.90, 0.80, 0.70, 0.65 are explored. The second-order phase transition is shown to occur in the three-dimensional 3-state Potts model with nonmagnetic impurities. In the 4-state Potts model there are observed first-order phase transitions in weakly diluted state, when the model is strongly diluted the first-order phase transitions change to the second-order one. On the basis of the finite-size scaling theory static critical exponents of specific heatα, susceptibilityγ, magnetizationβ, and exponent of correlation radiusνfor the systems under study are calculated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.