Abstract

The removal of environmentally harmful S/N is crucial for utilization of high-S petroleum coke (petcoke) as fuels. Gasification of petcoke enables enhanced desulfurization and denitrification efficiency. Herein, petcoke gasification with the mixture of two effective gasifiers (CO2 and H2O) was simulated via reactive force field molecular dynamics (ReaxFF MD). The synergistic effect of the mixed agents on gas production was revealed by altering the CO2/H2O ratio. It was determined that the rise in H2O content could boost gas yield and accelerate desulfurization. Gas productivity reached 65.6% when the CO2/H2O ratio was 3:7. During the gasification, pyrolysis occurred first to facilitate the decomposition of petcoke particles and S/N removal. Desulfurization with the CO2/H2O gas mixture could be expressed as thiophene-S → S → COS → CHOS, thiophene-S → S → HS → H2S. The N-containing components experienced complicated mutual reactions before being transferred into CON, H2N, HCN, and NO. Simulating the gasification process on a molecular level is helpful in capturing the detailed S/N conversion path and reaction mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call