Abstract

In this work, guanidinium (GA+) was doped into methylammonium lead triiodide (MAPbI3) perovskite film to fabricate perovskite solar cells (PSCs). To determine the optimal formulation of the resulting guanidinium-doped MAPbI3 ((GA)x(MA)1-xPbI3) for the perovskite active layer in PSCs, the perovskite films with various GA+ doping concentrations, annealing temperatures, and thicknesses were systematically modulated and studied. The experimental results demonstrated a 400-nm-thick (GA)x(MA)1-xPbI3 film, with 5% GA+ doping and annealed at 90 °C for 20 min, provided optimal surface morphology and crystallinity. The PSCs configured with the optimal (GA)x(MA)1-xPbI3 perovskite active layer exhibited an open-circuit voltage of 0.891 V, a short-circuit current density of 24.21 mA/cm2, a fill factor of 73.1%, and a power conversion efficiency of 15.78%, respectively. Furthermore, the stability of PSCs featuring this optimized (GA)x(MA)1-xPbI3 perovskite active layer was significantly enhanced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call