Abstract

Energy Harvesting from human motion as a means of powering body-worn devices has been in the focus of research groups for several years now. This work presents a rotational inductive energy harvester that can generate a sufficient amount of energy during normal walking to power small electronic systems. Three pendulum structures and their geometrical parameters are investigated in detail through a system model and system simulations. Based on these results a prototype device is fabricated. The masses and angles between pendulum arms can be changed for the experiments. The device is tested under real-world conditions and generates an average power of up to 23.39 mW across a resistance equal to the coil resistance of the optimal pendulum configuration. A regulated power output of the total system including power management of 3.3 mW is achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.