Abstract

Various perfluorosulfonic acid membranes (PFSAs) were studied as pure and silicon oxide composite membranes for operation in hydrogen/oxygen proton-exchange membrane fuel cells (PEMFCs) from 80 to 140 °C. The composite membranes were prepared either by impregnation of pre-formed PFSAs via sol–gel processing of a polymeric silicon oxide, recasting a film using solubilized PFSAs and a silicon oxide polymer/gel. All composite membranes had a silicon oxide content of less than or equal to 10% by weight. Decreasing the equivalent weight and thickness of the PFSAs, in addition to the incorporation of silicon oxide helped improve water management in a PEMFC at elevated temperatures. Fourier transform-infrared spectroscopy–attenuated total reflectance (FT-IR–ATR), and scanning electron microscopy (SEM) experiments indicated an evenly distributed siloxane polymer in all of the composite membranes. At a potential of 0.4 V the Aciplex 1004/silicon oxide composite membrane in a humidified H 2/O 2 PEMFC at 130 °C and a pressure of 3 atm delivered six times higher current density than unmodified Nafion 115 under the same conditions, and 1.73 times the current density when unmodified Nafion 115 was operated with humidified gases at 80 °C and 1 atm of pressure. Furthermore, the PEMFC performances with the PFSA/silicon oxide composite membranes were physically more robust than the control membranes (unmodified PFSAs), which degraded after high operation temperature and thermal cycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.