Abstract
The adsorption of Pb(II) by pumice samples collected from the Mount Ararat region, located in eastern Turkey, was investigated in a batch system. The combined and individual effects of operating parameters on adsorption were analyzed using a multi-step response surface methodology. In the first step the most effective factors, which are initial Pb(II) concentration, pH, and temperature, were determined via fractional factorial design. Then the steepest ascent/descent followed by central composite design were used to interpret the optimum adsorption conditions for the highest Pb(II) removal. The optimum adsorption conditions were determined to be initial Pb(II) concentration of 84.30 mg/L, pH of 5.75, and temperature of 41.11 °C. At optimum conditions, the adsorption capacity of pumice for Pb(II) was found to be 7.46 mg/g according to a removal yield of 88.49 %. The obtained data agreed with a second-order rate expression and fit the Langmuir isotherm very well. The thermodynamic parameters such as ΔH°, ΔS°, and ΔG° for the Pb(II) adsorption were calculated at four different temperatures. The present results indicate that pumice is a suitable adsorbent material for adsorption of Pb(II) from aqueous solutions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.