Abstract

Intensive water hammer can cause pipe collapse in long-distance water transfer pipeline systems. Pressure control facilities like surge tank have been widely applied to help control the extensive pressure fluctuations. In our previous work, a kind of spring self-adaptive auxiliary control (SAC) system was proposed and demonstrated to have a significant improvement on pressure control capacity of a normal surge tank. In this study, an additional solution, a partially expanded structural treatment, was introduced to a conventional SAC surge tank to further improve its functional ability. The 1D numerical model was established in our in-house codes on FORTRAN. The dominant geometrical parameters were identified and quantitatively studied with various cases. According to the effects of the geometrical parameters, a designing protocol for searching the optimal solutions of partially expanded SAC surge tank was concluded. With the obtained optimal solutions, the proposed partially expanded SAC surge tank can perform a much better pressure control performance dealing with valve closure induced water hammer, compared with a conventional SAC surge tank as well as a normal surge tank.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.