Abstract

We have systematically investigated the effects of all possible combinations of vacancies and silicon substitutions on the electronic structure of the β and κ phases of Ga2O3 using plane-wave density functional theory (DFT) methods. It was found that VGa defects are associated with a sufficient shift of the Fermi level to lower energy to induce p-type behavior, with formation energies in the range of 9.0 ± 0.2 eV. Calculations with single atom substitutions in the κ phase, including nitrogen, phosphorous, and silicon, did not show p-type character, although NO substitutions may lead to shallow acceptor states. In the pursuit of elucidating how MOCVD growth of Ga2O3 can result in p-type behavior, as indicated by experimental results in the literature, we examined the role of combining hydrogen and silicon substitutions. The results showed that p-type behavior is observable when gallium atoms are substituted for hydrogen within the coordination sphere of SiO substitutions. This shows that silicon can act as an amphoteric dopant for p-type Ga2O3 semiconducting materials when hydrogen is included with formation energies<6.0 eV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call