Abstract

In the process of manufacturing three-dimensional Not AND (3D NAND) flash memory devices, oxide regrowth occurs during the selective Si3N4 etching process on the Si3N4/SiO2 multi-stack structures. The oxide regrowth issue must be suppressed. Thus, effects of two factors, the mass transfer ability of etching byproduct and the stack number of 3D NAND structure, on oxide regrowth were investigated in this study using finite element method (FEM) simulation. Using FEM simulation, we predicted that increase in the stack number of the 3D NAND structure and decrease in the diffusivity of Si3N4 etching byproducts highly aggravated the oxide regrowth. Therefore, it was suggested that an etchant capable of promoting H2SiO3 diffusion behavior would inhibit the oxide regrowth during the selective Si3N4 etching process of the 3D NAND structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call