Abstract
Abstract Adenosine triphosphate (ATP) production in living cells is very important. Different researches have shown that in terms of mathematical modeling, the domain of these investigations is essentially restricted. Recently the thermodynamic models have been suggested for calculation of the efficiency of oxidative phosphorylation process and rate of energy loss in animal cells using chemiosmotic theory and non-equilibrium thermodynamics equations. In our previous work, we developed a mathematical model for mitochondria of animal cells. In this research, according to similarities between oxidative phosphorylation process in microorganisms and animal cells, Golfar's model was developed to predict the non-equilibrium thermodynamic behavior of the oxidative phosphorylation process for bacteria in aerobic condition. With this model the rate of energy loss, P/O ratio, and efficiency of oxidative phosphorylation were calculated for Escherichia coli in aerobic condition. The results then were compared with experimental data given by other authors. The thermodynamic model had an acceptable agreement with the experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.