Abstract

Frequency evolutions of hysteresis loop area and hysteresis tools such as remanence and coercivity of a kinetic Ising model in the presence of quenched bond dilution are investigated in detail. The kinetic equation describing the time dependence of the magnetization is derived by means of effective-field theory with single-site correlations. It is found that the frequency dispersions of hysteresis loop area, remanence and coercivity strongly depend on the quenched bond randomness, as well as applied field amplitude and oscillation frequency. In addition, the shape of the hysteresis curves for a wide variety of Hamiltonian parameters is studied and some interesting behaviors are found. Finally, a comparison of our observations with those of the recently published studies is represented and it is shown that there exists a qualitatively good agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.