Abstract

Abstract This study uses a dense rain gauge network, radar observations, and an upslope model to document the detailed aspects of precipitation over Da-Tun Mountain (DT) of northern Taiwan under prevailing northeasterly monsoonal flow. DT is one of the most concentrated areas of heavy rainfall in Taiwan, with a size of ~15 km and a terrain peak of ~1 km (MSL), and it constitutes a concave ridge with two windward ridge arms that encompass a funnel-shaped valley. Twenty-one rainfall events identified over DT from January 2011 to February 2015 are chosen for analysis. More than half of the studied cases exhibit two local maxima of rainfall over the ridge arms, and asymmetric characteristics between these two maxima are evident. The other frequent rainfall pattern, observed as upstream winds are more from the east-northeast, is characterized by a local maximum of precipitation inside the valley. Analyses from the upslope model confirm that the occurrence of the windward maxima of rainfall is primarily caused by upslope lifting, and their asymmetric characteristics are closely related to the difference in the azimuthal variations of slope steepness between the two ridge arms. The observed characteristics of rainfall intensities inside the valley, however, cannot be well described by the upslope model. It is found that the lateral flow confluence induced by the deflected flows over the ridge arms may play an essential role in intensifying upslope-forced precipitation within the valley. This effect emerges as upstream winds are roughly parallel to the central axis of funneling regions located between the ridge arms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.