Abstract

The work function of palladium (Pd) is known to be sensitive to hydrogen (H2) via the formation of a surface dipole layer or Pd hydride. One approach to detect such a change in the work function is based on the formation of a Schottky barrier between Pd and a semiconductor. Here, we demonstrate a H2 sensor operable at room temperature by assembling solution-processed, pre-separated semiconducting single-walled carbon nanotube (SWNT) network bridged by Pd source/drain (S/D) electrodes in a configuration of field-effect transistors (FETs) with a local back-gate electrode. To begin with, we observed that the H2 response of the fabricated SWNT FETs can be enhanced in the linear operating regime, where the change in the work function of the Pd S/D electrodes by H2 can be effectively detected. We also explore the H2 responses in various SWNT FETs with different physical dimensions to optimize the sensing performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.