Abstract

Optical power tolerance on micromirrors is a critical aspect of many high-power optical systems. Absorptive heating can negatively impact the performance of an optical system by altering the micromirror's curvature during operation. This can lead to shifts in the beam waist locations or imaging planes within a system. This paper describes a scheme to measure the impact of mirror heating by optical power and determine the power tolerances of micromirrors with gold and aluminum coatings using a 532-nm laser. Results are compared with an analytical model of thermally induced stress and optical absorptive heating. Experimental data shows that gold-coated mirrors are able to handle 40 mW of optical power with a beam waist displacement of less than 20% of the output Rayleigh length, while aluminum-coated mirrors can tolerate 125 mW. Measured data along with modeling suggest that, with proper metal coating, optical powers greater than 1 W should not adversely affect the system performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.