Abstract
We study the correct solvability of initial problems for abstract integrodifferential equations with unbounded operator coefficients in a Hilbert space. We do spectral analysis of operator-functions that are symbols of such equations. The equations under consideration are an abstract form of linear integrodifferential equations with partial derivatives arising in viscoelasticity theory and having a number of other important applications. We describe localization and structure of the spectrum of operatorfunctions that are symbols of such equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.