Abstract

A sputter-cleaned amorphous In–Ga–Zn–O thin-film surface was exposed to O2 and air, and the spectral changes at the O 1s, In 3d, Ga 3d, Zn 3d, and the valence band were investigated by soft-X-ray photoelectron spectroscopy. Both exposures reduced the density of the oxygen-vacancy-representing deep subgap state, which was located above the maximum of the valence band. The exposures also reduced the densities of the metallic states, which were observed near the Fermi energy and at In 3d. A higher oxidation state than that of the unexposed metal oxide was negligibly observed at the metal 3d orbitals. These results imply that O2 and air exposures effectively fill oxygen vacancies and decrease the number of free electrons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.