Abstract
ABSTRACTWe report the investigation on the properties of a novel Te precursor (i-C3H7)2Te and its effectiveness in fabricating MoTe2. The vapor pressure of the precursor was obtained by measuring the pressure as a function of its temperature in a sealed chamber. As a result it showed a high vapor pressure of 552.1 Pa at room temperature. The decomposition of the precursor was also investigated using DFT calculation. It was shown that the most likely reaction during the course of the decomposition of (i-C3H7)2Te is (i-C3H7)2Te → H2Te + 2 C3H7. The effectiveness of the precursor on the fabrication of MoTe2 was also investigated. Sputter-deposited MoO3 was tellurized in a quartz-tube furnace at the temperature up to 440°C. The resulting film showed that the 80% of the original MoO3 was tellurized to form MoTe2. It was also shown that further optimization of tellurization is required in order to prevent formation of metal Mo and elemental Te.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.