Abstract

The molecular mechanisms responsible for sepsis-induced endothelial dysfunction leading to an elevated risk of cardiovascular diseases remain undefined. Endotoxic or septic shock is a potentially lethal complication of systemic infection by Gram-negative bacteria. Lipopolysaccharide (LPS) is a critical glycolipid component of the outer wall of Gram-negative bacteria, and many of the sepsis-associated cellular signals by Gram-negative bacteria are attributed to LPS. Given that LPS has an established role in the pathophysiology of sepsis and long non-coding RNAs (lncRNAs) have been reported to critically regulate vascular homeostasis, a systematic transcriptional survey was conducted to evaluate the impact of LPS stimulation on human endothelial lncRNAs and protein-coding transcripts (mRNAs). LncRNAs and mRNAs from LPS-treated (100ng/mL; 24h) human umbilical vein endothelial cells (HUVECs) were profiled with the Arraystar Human lncRNA Expression Microarray V3.0. Of the 30,584 lncRNAs screened, 871 were significantly upregulated and 1068 significantly downregulated (p<0.05) in response to LPS. In the same HUVEC samples, 733 of the 26,106 mRNAs screened were upregulated and 536 were downregulated. Among the differentially expressed lncRNAs, AL132709.5 was the most upregulated (~70 fold) and CTC-459I6.1 the most downregulated (~28 fold). Bioinformatics analyses indicated that the differentially expressed upregulated mRNAs are primarily enriched in cytokine-cytokine receptor interaction, infectious diseases, TNF signaling pathway, FoxO signaling pathway, and pathways in cancer. This is the first lncRNA and mRNA transcriptome profile of LPS-mediated changes in human endothelial cells. These observations may reveal novel endothelial targets of LPS that may be involved in the vascular pathology of sepsis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.