Abstract

We investigate the undocumented B meson decay, B{sup +} {yields} {Psi}(2S){omega}K{sup +}. The data were collected with the BaBar detector at the SLAC PEP-II asymmetric-energy e{sup +}e{sup -} collier operating at the {gamma}(4S) resonance, a center-of-mass energy of 10.58 GeV/c{sup 2}. The {gamma}(4S) resonance primarily decays to pairs of B-mesons. The BaBar collaboration at the PEP-II ring was located at the SLAC National Accelerator Laboratory and was designed to study the collisions of positrons and electrons. The e{sup -}e{sup +} pairs collide at asymmetric energies, resulting in a center of mass which is traveling at relativistic speeds. The resulting time dilation allows the decaying particles to travel large distances through the detector before undergoing their rapid decays, a process that occurs in the in the center of mass frame over extremely small distances. As they travel through silicon vertex trackers, a drift chamber, a Cerenkov radiation detector and finally an electromagnetic calorimeter, we measure the charge, energy, momentum, and particle identification in order to reconstruct the decays that have occurred. While all well understood mesons currently fall into the qq model, the quark model has no a priori exclusion of higher configuration states such as qqqq which has led experimentalists and theorists alike to seek evidence supporting the existence of such states. Currently, there are hundreds of known decay modes of the B mesons cataloged by the Particle Data Group, but collectively they only account for approximately 60% of the B branching fraction and it is possible that many more exist.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call