Abstract
Abstract Nonlinear current–voltage (I–V) behavior is a typical feature of polymeric composites containing conductor or semiconductor fillers, which are desired to handle the transient voltage and electrostatic discharge (ESD) of microelectronic devices. In this paper, the mechanism of nonlinear behavior of carbon nanotubes (CNTs) filled polymer composites in the applied electric field was explored. The I–V curves of the composites exhibited three regions. The variation of current at low voltages (region I) is linear. Under relatively higher voltages (region II), the variation is nonlinear and grows rapidly with voltage. As the voltage is further increased, the I–V curve is still non-linear (region III), but the growth rate is significantly slowed down. The I–V characteristics in the above three regions were analyzed systematically based on the calculation of the electrons hopping from the conduction band of CNTs to epoxy, the induced current under electric field, as well as Joule-heating and tunneling effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.