Abstract
In this work, Doppler reflectometry (DR) and radial correlation DR (RCDR) nonlinear scattering effects are studied using full-wave modeling with a set of representative FT-2 tokamak turbulence as inputs. Narrowing of the RCDR correlation function and widening of the DR poloidal wavenumber spectrum are demonstrated. An effect on the dependence of the DR signal frequency shift on the probing wavenumber is found, namely, this dependence ‘linearizing’ in the nonlinear scattering regime. Nonlinear effects are shown to be weaker for O-mode probing than for X-mode probing, while a faster transition to nonlinear regime is demonstrated for RCDR compared to DR in both probing scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.