Abstract

Solar cells are a potential option to meet the growing energy requirements of humans. Organic solar cells (OSCs) represent a class of solar cells that is a part of the third generation solar cell technology. The quest for obtaining enhanced OSC efficiencies has led to the incorporation of metallic nanoparticles (NPs) in the OSCs. Metallic NPs increase the incident light absorption instances, thus increasing the obtainable cell efficiencies. Different parameters and factors need to be considered for obtaining the optimum NP specifications. Investigations of the mechanism of light absorption after the introduction of NPs in the OSC are critical. Hence theoretical simulations for such OSCs are important. An overview of the different solar cell characterization techniques is presented in this paper. Simulations are carried out for these characterization techniques to study the behavior of the P3HT:PCBM based OSC in which silver NPs are incorporated in the active layer. The simulations are carried out for the cell structure in the presence of different non-ideality factors. The non-idealities include mobility limitations, presence of traps, recombination losses, low generation, presence of non-ideal values of series and shunt resistances, the effect of doping, etc. The simulated characterization techniques can be utilized for the performance study and parameter extraction of these NP incorporated OSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call