Abstract

The non-magnetic and ferromagnetic phases of 3D Wigner electron crystal are investigated using a localized representation of the electrons with NaCl and CsCl structures. The ground state energies of ferromagnetic and non-magnetic phases of Wigner electron crystal are computed in the range 10 ≤ rs ≥ 130. The role of correlation energy is suitably taken into account. The low density region favorable for the ferromagnetic phase is found to be 4.8 × 1020 electrons/cm3 and for the non-magnetic phase, it is 2.03 × 1020 electrons/cm3. It is found that the ground state energy of ferromagnetic phase is less than that of the non-magnetic phase of the Wigner electron crystal. The structure-dependent Wannier functions, which give proper localized representation for Wigner electrons, are employed in the calculation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.