Abstract

Inertial non-Darcy flow effects can significantly lower the productivity of fractured gas wells. The effects were investigated numerically, taking into account inertial flow in the fracture and the reservoir. Simulations are performed by means of a fully-implicit in-house simulator. The non-Darcy flow implementation is based on an implicit treatment with relaxation of the non-Darcy control parameter. Contrary to the conventional method, the present approach facilitates the consideration of highly inertial flow and accounts also for permeability (stress) dependency of non-Darcy flow coefficients. The simulation tool is applied to a synthetic production scenario in typical tight-gas wells for constant and stress-dependent parameters. Results suggest that non-Darcy flow effects will influence the productivity despite the relatively low gas rates. Regarding a realistic scenario, the total gas production is reduced by 21% to 40%. New type-curves are presented for fracture and reservoir non-Darcy flow to identify the impact of reservoir non-Darcy flow and to facilitate the prediction of the performance of a fractured well. Technical contributions in this paper include (i) the illustration of stable and robust non-Darcy flow implementation in a fully-implicit reservoir simulation tool, (ii) unfolding the impact of inertial flow effects on a tight-gas well, and (iii) developing new type-curves accounting for non-Darcy flow in the reservoir and the fracture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.