Abstract

A study of non-Darcian forced convection in an asymmetric heating sintered porous channel is carried out to investigate the feasibility of using this channel as a heat sink for high-performance forced air cooling in microelectronics. A volume-averaging technique is applied to obtain the macroscopic equations with the non-Darcian effects of no-slip boundary, flow inertia, and thermal dispersion. Local non-thermal-equilibrium is assumed between the solid and the fluid phases. The analysis reveals that the particle Reynolds number significantly affects the solid-to-fluid heat transfer coefficients. A wall function is introduced to model the transverse thermal dispersion process for the wall effect on the lateral mixing of fluid. The local heat transfer coefficient at the inlet is modeled by a modified impinging jet result, and the noninsulated thermal condition is considered at exit. The numerical results are found to be in good agreement with the experimental results in the ranges of 32 ≤ Red ≤ 428 and q = 0.8 ~ 3.2 W/cm2 for Pr = 0.71.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.