Abstract

Recently, human telomeric DNA was found to be transcribed into RNA transcripts composing of tandem repeats of r(UUAGGG) which can form G-quadruplex structures. Studies have shown that human telomeric RNA is associated with the telomerase activity in vitro. Finding high affinity small molecule ligands binding to the telomeric RNA G-quadruplex may facilitate the regulation of the telomerase activity. The 12-mer and 24-mer telomeric RNA sequences, r(UAGGGUUAGGGU) and r(UAGGGUUAGGGUUAGGGUUAGGGU), were synthesized by TaKaRa Biotechnology (Dalian) Co., Ltd. (TaKaRa, Dalian) with high-performance liquid chromatography (HPLC) purification. Electrospray ionization ion-trap mass spectrometry was used to evaluate the binding affinities of three natural flexible cyclic molecules, tetrandrine, fangchinoline and cepharanthine, with the telomeric RNA G-quadruplexes. The fragmentation pathways of the G-quadruplexes and G-quadruplex-ligand complexes were investigated by tandem mass spectrometry. the natural flexible cyclic molecules were found to have high binding affinities to the 12-mer and 24-mer RNA G-quadruplexes with stoichiometry of 1:1 to 3:1. Collision-induced dissociation tandem mass spectrometry shows that the G-quadruplex-ligand complexes lose neutral ammoniums first and the small molecule ligand subsequently. Besides, among the three flexible cyclic molecules, cepharanthine binds most tightly to the RNA G-quadruplexes than tetandrine and fangchinoline. Three flexible cyclic small molecules were found to be potential telomeric RNA G-quadruplex ligands, especially cepharanthine, which has high affinity and binds most tightly to the RNA G-quadruplexes. These findings may provide further implications in the regulation of telomeric RNA and telomerase activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call