Abstract

Utilising ammonia, which is one of the most promising carbon-free fuels, comes with the challenge of stable combustion due to its low reactivity. Therefore, advanced strategies are needed, including blending ammonia with highly reactive fuels or implementing innovative combustion techniques. For this reason, the present study proposes an ammonia-methane dual-fuel co-firing combustion mode. The second focus is to analyse the effect of preheating the main swirl air on NO emissions and examine the chemical kinetic reactions. Experimentally, chemiluminescence imaging was conducted to analyse OH* and NH2* emissions to evaluate the flame structure and reaction zones. Numerically, simulations were performed using a chemical multi-reactor network model to examine kinetics. By comparing the fully premixed combustion to the dual-flame co-burning mode, the NO emissions decreased by 80% in the latter case at T = 473K and ϕ = 0.6. The NH3 reaction pathway analysis shows a significantly higher percentage reduction of NO and NH2 reactions in dual flame mode compared to premixed flames. Preheating the main air impacts NO reactions in the dual flame mode, allowing for lower NO emissions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.