Abstract

Ni- and Co-oxide materials have promising electrocatalytic properties towards the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR), and attract with low cost, availability, and environmental friendliness. The stability of these materials in alkaline media has made them the most studied candidates for practical applications such as a gas diffusion electrode (GDE) for rechargeable metal-air batteries. In this work, we propose a novel concept for a carbon-free gas GDE design. A mixture of catalyst (Co3O4, NiCo2O4) and polytetrafluoroethylene was hot pressed onto a stainless-steel mesh as the current collector. To enhance the electrical conductivity and, thus, increase ORR performances, up to 70 wt.% Ni powder was included. The GDEs produced in this way were examined in a half-cell configuration with a 6 M KOH electrolyte, stainless steel counter electrode, and hydrogen reference electrode at room temperature. Electrochemical tests were performed and coupled with microstructural observations to evaluate the properties of the present oxygen electrodes in terms of their bifunctionality and stability enhancement. The electrochemical behavior of the new types of gas-diffusion electrodes, Ni/Co3O4 and Ni/NiCo2O4, shows acceptable overpotentials for OER and ORR. Better mechanical and chemical stability of electrodes consisting of Ni/NiCo2O4 (70:30 wt.%) was registered. Doi: 10.28991/ESJ-2023-07-03-023 Full Text: PDF

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.