Abstract

Layered double hydroxides with different ratios of nickel and aluminum in the presence of Ag + ions and without silver have been synthesized: Ni: Al – 80 %: 20 %, Ni: Al: Ag – 80 %: 15 %: 5 % and 75 %: 15 %: 5 %. The obtained nickel hydroxide powders have a structure similar to α-Ni(OH) 2 with a large number of crystal lattice defects. As a result of galvanostatic charge-discharge cycling, it was revealed that the addition of silver in the chemical synthesis stage increases the hydroxide utilization coefficient at fast discharges but decrease it at slow discharges. A possible mechanism that explains the influence of added silver during synthesis on discharge characteristics of hydroxide powders was proposed. The mechanism is that silver oxide, which is a semiconductor, is mixed with hydroxide and increases the specific conductivity of the powder. Increased electrical conductivity has a positive effect on charge effectiveness, because the initial phase has lower electrical conductivity than the oxidized form – NiOOH. Because the charge involves two processes – the main process of active material charging and evolution of molecular oxygen, the electrical conductivity would play a key role in the electrode charging. At low electrical conductivity and fast charge, the current would primarily be consumed by the side process of oxygen evolution. In case of slow charges, additional electrical conductivity due to the presence of silver oxide would not have a great effect on charge effectiveness, because under such conditions the own conductivity of hydroxide is sufficient. Additionally, the presence of silver oxide would decrease the hydroxide content, which in turn would decrease the utilization coefficient that is calculated from the total mass of the powder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.