Abstract
The influence of NH3 input partial pressure on N-polarity InGaN grown by tri-halide vapor phase epitaxy was investigated. It was found that surface morphology, solid composition and optical properties were affected by NH3 input partial pressure. As shown in thermodynamic analyses, the indium content increased due to an increase in the driving force for InN deposition caused by increased NH3 input partial pressure. In addition, the deep level emission around 2.1 eV in photoluminescence measurements drastically decreased at higher NH3 input partial pressures. Ab initio calculations and subsequent secondary ion mass spectrometry measurements suggested the reduction of metal-vacancies and/or carbon impurity incorporation in the InGaN layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.