Abstract
The transient negative-ion resonances found in scattering experiments are important intermediates in many chemical processes. These metastable states correspond to the continuum part of the Hamiltonian of the projectile-target composite system. Usual bound-state electronic structure methods are not applicable for these. In this work, we develop a subspace-projection method in connection with an electron propagator (EP) defined in terms of a complete-active-space self-consistent-field initial state. The target Hamiltonian (Ĥ) is perturbed by a complex absorbing potential (CAP) for the analytical continuation of the spectrum of Ĥ to complex eigenvalues associated with the continuum states. The resonance is identified as a pole of the EP, which is stable with respect to variations in the strength of the CAP. The projection into a small subspace reduces the size of the complex matrices to be diagonalized, minimizes the computational cost, and affords some insight into the orbitals that are likely to play some role in the capture of the projectile. Two molecular (Πg2N2 - and 2Π CO-) and an atomic shaperesonance (2P Be-) are investigated using this method. The position and width of the resonances are in good agreement with the previously reported values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.