Abstract

The ability to modulate the size, the nanostructure, and the macroscopic properties of water-in-oil microemulsions is useful for a variety of technological scenarios. To date, diverse structures of water-in-alkane microemulsions stabilized by sodium bis(2-ethylhexyl) sulfosuccinate (AOT) have been extensively studied. Even though the decisive parameter which dictates the phase behavior of micremulsions is the nature of the continuous phase, relatively very few reports are available on the structure and interactions in the microemulsions of aromatic oil. Here, we present a fundamental investigation on water-in-xylene microemulsions using small-angle neutron scattering (SANS) at a fixed molar ratio (ω) of water to AOT. We elucidate the microstructural changes in the water-AOT-xylene ternary system at dilute volume fractions (Φ = 0.005, 0.01, 0.03), where the droplet-droplet interactions are absent, to moderately concentrated systems (Φ = 0.05, 0.10, 0.15, and 0.20), where colloidal interactions become important. We also characterize the reverse microemulsions (RMs) for thermally induced microstructural changes at six different temperatures from 20 to 50 °C. Depending on the magnitude of Φ, the scattering data is found to be well described by considering the RMs as a dispersion of droplets (with a Schulz polydispersity) which interact as sticky hard spheres. We show that while the droplet diameter remains almost constant with increase in the volume fraction, the attractive interactions become prominent, much like the trends observed for water-in-alkane microemulsions. With increase in temperature, the RMs showed a marginal decrease in the droplet size but no pronounced dependence on the interactions was observed with the overall structure remaining intact. The fundamental study on a model system presented in this work is key to understanding the phase behavior of multiple component microemulsions as well as their design for applications at higher temperatures, where the structure of most RMs breaks down.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.