Abstract

The in vivo release of wear debris and corrosion products from the metallic interfaces of total hip replacements is associated with a wide spectrum of adverse body reactions and systemic manifestations. The origin of debris and the electrochemical conditions at the sites of material loss both play a role in determining the physicochemical characteristics of the particles, and thus influence their in vivo reactivity. Debris retrieved from revised CoCrMo tapers and cement-stem interfaces consists of heterogeneous flakes that comprise mechanically mixed metal particles, corrosion products and organic material. Detailed investigation of the size and composition of the metal debris contained within these composites requires the digestion of the flakes to release the small metal particles. Here, we compare alkaline and enzymatic digestion methods that both aim to fragment the flakes and reveal their smallest building blocks. The characterization of debris cleaned with both methods revealed crystalline Cr oxide nanoparticles and clusters. Comparison between the treatments showed that the alkaline method is more efficient in fragmenting the flakes and provided cleaner and generally smaller nanoparticles than exhibited in debris released with the enzymatic treatment. The provision of cleaner nanoparticles from the alkaline method also allows the physicochemical properties of the particles to be more clearly identified. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 424-434, 2019.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.