Abstract

Improvement of the photovoltaic efficiency via exposure of organic poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) devices to solvent vapor at room temperature is reported. In situ photoluminescence (PL) and Raman spectroscopy, in conjunction with ex situ optical absorption and atomic force microscopy, have been used to provide insight into the nanoscale morphological changes occurring during solvent vapor annealing. We found that in 1 : 1 composites of P3HT : PCBM, suppression of PL, narrowing in line-width of the 1442 cm−1 P3HT Raman peak, and strong modifications in the optical absorption spectra were observed during solvent vapor annealing, while minimal changes occurred in pure P3HT films. We attribute these spectral modifications to de-mixing of PCBM and subsequent stacking of P3HT in coplanar conjugated segments, similar to what is observed during thermal annealing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.