Abstract
Studies were conducted of the heat exchange crisis depending on the coolant excess (which determined the underheating and flow rate), the thermal-physical properties of the heating surface, and the ejection of liquid droplets from the porous structure. A model of dynamics of vapor bubbles born on the solid surface in porous structures and the vapor-generating wall (substrate) has been developed. The model is based on cinematography with an SKS-1M speed camera. The removal of high heat flows (up to 2·106 W/m2) is provided through the joint action of capillary and mass forces with the use of intensifiers. Equations are obtained of critical heat flows through the thermohydraulic characteristics of the boiling process in woven porous structures. The research is of practical importance in the limiting state region of the steam-generating surface protected by cooling from overburning. Three mineral media (tuff, granite, marble) of Zaili and Dzungarian Alatau mountains near the city of Almaty (Kazakhstan) were considered. The method of holographic interferometry was used to study porous thermodynamic screens. The stress and deformed state of the samples was studied. Simulation of the acoustic field of the blast wave with th e thermodynamic field created by three thermal sources has shown its high efficiency. The created powerful thermal screen, due to the generation of strain and thermal stress fields, is an obstacle to the propagation of the reflected blast wave, causing the emergence and development of destructive cracks. Nanoscale and microscale structured surfaces in the form of coatings and mesh structures have been developed, which give an integrated effect of industrial meshes with natural mineral media coatings and have synergistic advantages of combining these two developments in an integrated technology of their production, expansion of critical thermal loads and management of the limiting state of porous coatings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.