Abstract
In concentrated clear sol prepared from tetraethylorthosilicate, tetrapropylammonium hydroxide, and water suitable for crystallization of Silicalite-1 zeolite, the main part of the silica is present in nanoparticles. The nature of these nanoparticles and their evolution during the induction period and the stage of early crystal growth was investigated via dissolution experiments in the presence of excess TPAOH. The dissolution process was monitored in situ using static and dynamic light scattering (SLS/DLS) and synchrotron small-angle X-ray scattering (SAXS). The complete dissolution of an individual nanoparticle was observed to occur in one step. Dissolution transformed a nanoparticle into a cluster of silicate oligomers. Larger grown nanoparticles dissolved slower. Exponential dissolution rate constants scaled inversely proportional with the volume of the nanoparticle’s silica core. This experimentally observed dissolution behavior was modeled by assuming that a nanoparticle dissolved to oligomers via a...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.