Abstract

Carbon based nanofillers have shown phenomenal improvements in thermo-mechanical properties of poly vinyl alcohol (PVA) based nanocomposites depending on their interaction with PVA molecules and dispersion in the polymer matrix. In the present study, PVA based nanocomposites with amino-functionalized multi-wall carbon nanotubes (fMWCNTs, 0.2, 0.4, 0.8 and 1.0 wt%) were prepared by a simple casting method from aqueous solution. The relative increase in Young's modulus with 0.4% fMWCNTs was observed to be comparable with that for PVA-nanodiamond composite films which have been shown to have higher strength compared to nanotube and graphene oxide based nanocomposites. In order to investigate the nanolevel molecular packing (sub-nano level free volumes and nano level lamellar structure) and its role in thermal and mechanical properties, positron annihilation spectroscopy and small angle scattering have been used. The crystallinity and morphology of the samples were characterized using X-ray diffraction and scanning electron microscopy. The studies showed that interfacial interaction between PVA molecules and functionalities on the surface of fMWCNTs results in the formation of an ordered structure of PVA molecules which enhances load transfer between the PVA matrix and fMWCNTs leading to improved mechanical properties. The thermal properties of the composites were observed to be unaffected at the studied filler concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.